622 Learning a Color Algorithm from Examples
نویسنده
چکیده
A lightness algorithm that separates surface reflectance from illumination in a Mondrian world is synthesized automatically from a set of examples, pairs of input (image irradiance) and desired output (surface reflectance). The algorithm, which resembles a new lightness algorithm recently proposed by Land, is approximately equivalent to filtering the image through a center-surround receptive field in individual chromatic channels. The synthesizing technique, optimal linear estimation, requires only one assumption, that the operator that transforms input into output is linear. This assumption is true for a certain class of early vision algorithms that may therefore be synthesized in a similar way from examples. Other methods of synthesizing algorithms from examples, or "learning", such as backpropagation, do not yield a significantly different or better lightness algorithm in the Mondrian world. The linear estimation and backpropagation techniques both produce simultaneous brightness contrast effects. The problems that a visual system must solve in decoding two-dimensional images into three-dimensional scenes (inverse optics problems) are difficult: the information supplied by an image is not sufficient by itself to specify a unique scene. To reduce the number of possible interpretations of images, visual systems, whether artificial or biological, must make use of natural constraints, assumptions about the physical properties of surfaces and lights. Computational vision scientists have derived effective solutions for some inverse optics problems (such as computing depth from binocular disparity) by determining the appropriate natural constraints and embedding them in algorithms. How might a visual system discover and exploit natural constraints on its own? We address a simpler question: Given only a set of examples of input images and desired output solutions, can a visual system synthesize. or "learn", the algorithm that converts input to output? We find that an algorithm for computing color in a restricted world can be constructed from examples using standard techniques of optimal linear estimation. The computation of color is a prime example of the difficult problems of inverse optics. We do not merely discriminate betwN'n different wavelengths of light; we assign @ American Institute of Physics 1988
منابع مشابه
O7: Research on the Brain and Learning: Plasticity and Variability and Their Impact on Talent Identification
This talk will introduce the idea that talent development is related to learning where learning is the physiological process of neuro-plastic changes in the brain. To develop talents, individuals must move from novice or beginner’s status to expertise levels of knowledge or skills in a particular domain. Learning depends on maximizing an individual’s potential through the experience...
متن کاملSIZE AND GEOMETRY OPTIMIZATION OF TRUSSES USING TEACHING-LEARNING-BASED OPTIMIZATION
A novel optimization algorithm named teaching-learning-based optimization (TLBO) algorithm and its implementation procedure were presented in this paper. TLBO is a meta-heuristic method, which simulates the phenomenon in classes. TLBO has two phases: teacher phase and learner phase. Students learn from teachers in teacher phases and obtain knowledge by mutual learning in learner phase. The suit...
متن کاملOptimal pricing and replenishment policies for instantaneous deteriorating items with backlogging and trade credit under inflation
In this paper we develop an economic order quantity model to investigate the optimal replenishment policies for instantaneous deteriorating items under inflation and trade credit. Demand rate is a linear function of selling price and decreases negative exponentially with time over a finite planning horizon. Shortages are allowed and partially backlogged. Under these conditions, we model the ret...
متن کاملA production-inventory model with permissible delay incorporating learning effect in random planning horizon using genetic algorithm
This paper presents a production-inventory model for deteriorating items with stock-dependent demand under inflation in a random planning horizon. The supplier offers the retailer fully permissible delay in payment. It is assumed that the time horizon of the business period is random in nature and follows exponential distribution with a known mean. Here learning effect is also introduced for th...
متن کاملSolving Fuzzy Equations Using Neural Nets with a New Learning Algorithm
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...
متن کامل